

2.4-2.5 GHz Silicon Linear Power Amplifier IC

PRELIMINARY DATA

FEATURES SUMMARY

- EXCELLENT LINEARITY EVM 2% @ 19dBm (WITH 802.11g OFDM 54Mb/s MODULATION)
- VERY LOW QUIESCENT CURRENT (60mA)
- INTEGRATED LINEAR ANALOG CONTROL FOR DC CURRENT AND OUTPUT MANAGEMENT
- INTEGRATED AVERAGE CHANNEL POWER DETECTOR
- LEADLESS PACKAGE (3mmx3mm LEAD FREE)

APPLICATIONS

OPTIMIZED FOR USE IN 802.11 b/g

QFN16L (3x3)

DESCRIPTION

The STB7720L, manufactured in the third generation of ST proprietary pure Si bipolar process, is a three-stage linear power amplifier (PA) optimized for 802.11b/g wireless LAN (WLAN) applications in the 2.4GHz ISM band. It features 32dB of power gain and delivers 19dBm of linear output power with an EVM degradation of only 2% under 802.11g Modulation (54Mbps).

The current consumption is as low as 125mA at 19dBm make the STB7720L a good solution for mobile applications. It achieves less than -40dBc firstside lobe suppression and less than -52dBc secondside lobe suppression under 802.11b modulation (11Mbps).

The device embeds a Linear Analog Control for DC current and output management and a Proprietary Average Channel Power Detector solution. This power detector has 20dB dynamic range with 1 voltage range and ±0.3dB accuracy under 2:1 load mismatch. It provides a buffered DC voltage proportional to the average channel output power. Thanks to this solution we save cost and space by removing a coupler, an op amp (usually required in a power down function) and also an integrator. The SBT7720 is housed in QFN 3mmx3mm Leadless package.

Table 1. Order Codes

Order Codes	Marking	Package	Packaging
STB7720	7720	QFN16L (3x3)	Tape & Reel

Table 2. Absolute Maximum Ratings (T_{amb} = 25 °C)

Symbol	Parameter	Value	Unit
V _{cc}	Supply voltage	5.5	V
T _{stb}	Storage temperature	-55 to + 150	°C
Ta	Operating Ambient Temperature -30 + 85		°C
Pin	Input Power 10		dBm

Table 3. Thermal Data

R _{th(j-case)}	Thermal Resistance Junction-Case	TBD	°C/W
		REV. 1	

August 2004 1/8

Figure 2. Functional Block Diagram

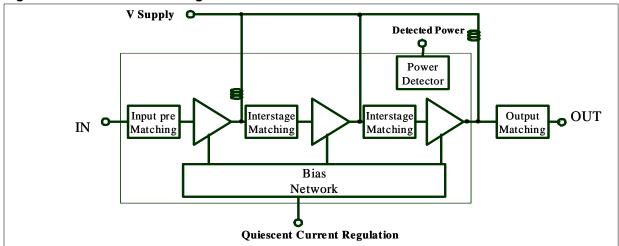
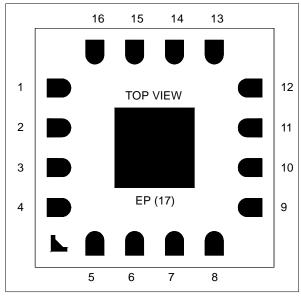



Figure 3. Pin Connection

Table 4. Pin Description

PIN	Symbol	Function	
1	nc	-	
2	RFin	RF input	
3	Vcnt	Power Control Voltage	
4	Epd	Enable Power Detector	
5	Vcc	Supply Voltage	
6	VDET	Power Detector Voltage	
7	nc	-	
8	nc	-	
9	nc	-	
10	RFout	RF output	
11	RFout	RF output	
12	nc	-	
13	nc	-	
14	Vcc	Supply Voltage	
15	nc	-	
16	Vcc	Supply Voltage	
EP	GND	Ground	

Table 5. Electrical Characteristics ($T_{amd} = 25$ °C, $V_{cc} = 3.3$ V, f = 2.45GHz, $V_{cnt} = 2.9$ V)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
f	Frequency		2.4	2.45	2.5	GHz
V _{cc}	Supply Voltage		3.0	3.3	3.6	V
Icc ⁽¹⁾	Current Consumption	P _{out} = 19 dBm		125		mA
Gp	Power Gain			32		dB
P _{1dB}	P1dB Compression			25		dBm
	Gain variation over Frequency			-/+ 0.5		dB
	Gain variation over Temperature			-/+ 0.5		dB
	Quiescent Current			60		mA
EVM ⁽¹⁾	Error Vector Magnitude	P _{out} = 19 dBm		2		%
ACPR ⁽²⁾	Adiacent Channel Power Ratio	P _{out} = 19dBm, 1st Side Lobe P _{out} = 19dBm, 2nd Side Lobe		-40 -52		dBc dBc
V _{det}	Output Detector Voltage Range			1		V
	Output Detector Voltage Response Time				4	μs
	2nd to 5th Harmonics				-40	dBc
	Spurious (stability) ⁽³⁾	Load VSWR 10:1		-65		dBc
	Turn On Time ⁽⁴⁾			0.5		μs

- (1) Parameter measured with RF modulation based on IEEE 802.11g standard (OFDM 54Mbps)
- (2) Parameter measured with RF modulation based on IEEE 802.11b standard (CCK 11Mbps) (3) Load VSWR is set to 10:1 and the angle is varied 360 degrees. Pout = -30 dBm to P1dB
- (4) Measured from Device On signal turn on to the point where RF Pout stabilizes to 0.5dB

TYPICAL PERFORMANCE

Figure 4. Supply Current Vs Output Power

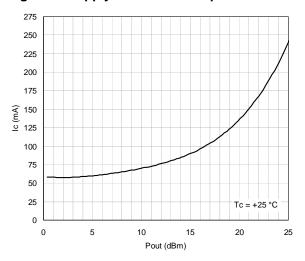


Figure 5. EVM Vs Output Power

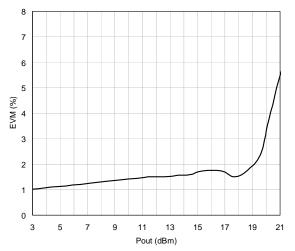


Figure 6. Power Gain Vs Output Power

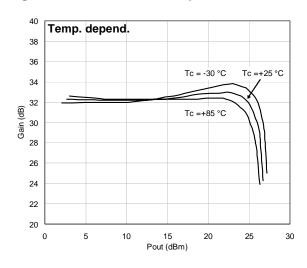


Figure 7. Power Gain Vs Frequency

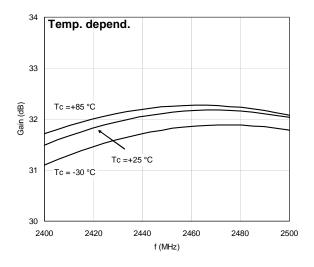


Figure 8. Power Detector Voltage Vs Pout

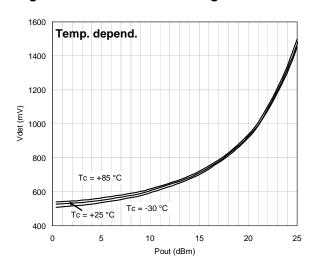


Figure 9. Power Detector Voltage Vs Pout

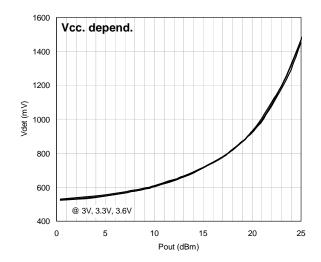
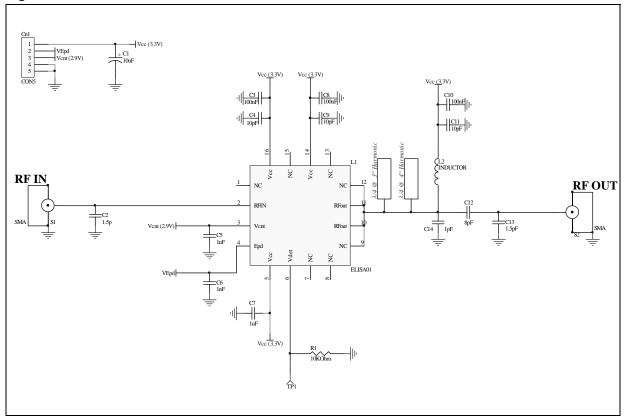
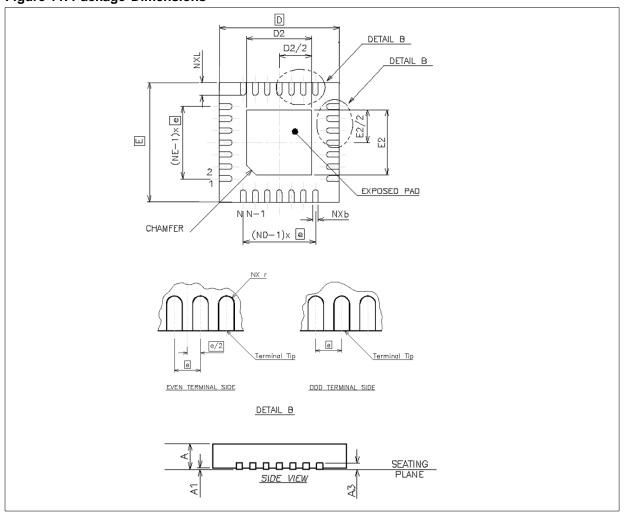



Figure 10. Circuit Schematic



PACKAGE MECHANICAL

Table 6. Mechanical Data - Leadless PACKAGE Exposed Pad (3mm x 3mm)

DIM.	mm			
	MIN.	TYP.	MAX	
А	0.80	0.90	1.00	
A1	0	0.02	0.05	
A3		0.20 REF		
b	0.18	0.23	0.30	
D		3.00 BSC		
D2	1.30	1.45	1.55	
E		3.00 BSC		
E2	1.30	1.45	1.55	
е		0.50 BSC		
L	0.30	0.40	0.50	
N		16		
ND		4		
NE		4		

Figure 11. Package Dimensions

REVISION HISTORY

Table 7. Revision History

Date	Revision	Description of Changes
2 August 2004	1	First Release

47

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics 2004 STMicroelectronics - All Rights Reserved

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com